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THE AUTOCORRE LATION FUNCTION OF STRUCTURAL 
RESPONSE MEASUREMENTS 

SUMMARY 

The autocorrelation function of the response of a multi-degree of freedom system 
is formally derived and analyzed to determine those factors which significantly influence 
its characteristics. The form of the autocorrelation function is primarily governed by 
the joint and cross-joint acceptance function from the viewpoint of coincidence as well as 
the geometric distribution of the pressure cross-power spectral density. Modal cross- 
coupling by damping also influences the response for  some structures. 

Autocorrelation functions of response measurements will generally be complex in 
nature and will consist of a superposition of damped sine and cosine functions of many 
frequencies. Narrow band filtering of the response measurements may yield autocor- 
relation functions possessing single degree of freedom characteristics depending on the 
spatial homogeneity of the pressure correlation functions. .- 

INTRODUCTION 

The response of mechanical structures subjected to random loading has been 
theoretically investigated from many aspects in recent years. 
efforts have been primarily directed toward the determination of the power spectral 
density o r  the mean square response of the structure due to acoustic-structural coupling. 
Although generally the end objective of response analysis is the Power Spectral Density, 
a necessary by-product of digital response analysis is the autocorrelation function. 

The various theoretical 

The autocorrelation function of response of a single degree of freedom system 
due to a homogeneous external pressure distribution is well known. For a white noise 
excitation, the autocorrelogram gives directly the damping ratio of the system. Such 
autocorrelograms have physical meaning in regard to system parameters. Since typical 
autocorrelograms of the response of missile structures to high intensity, inhomogeneous 
acoustic pressures  do not generally exhibit such single degree of freedom characteristics, 
the question arises as to how does one physically interpret the autocorrelation function of 
response of a multi-degree of freedom system. 

The calculation of theoretical autocorrelograms involves the determination of the 
acoustic-structural coupling coefficients ( joint acceptance squared) developed by Powell. 3 

These coefficients can be evaluated practically only under idealized structural configurations 



and external pressure distributions. It is not the intent of this analysis to compute such 
autocorrelograms, but to present the formal derivation of the autocorrelation function of 
response of a multi-degree of freedom system in an effort'to determine the relative effect 
of the various contributing mechanisms to the form of total response function. 

DERIVATION OF THE AUTOCORRE LATION FUNCTION OF RESPONSE 

In developing the expression for  the autocorrelation function of the response of a 
continuous structure at any arbitrary point to loads which vary randomly in both space 
and time, the following assumptions a r e  made: 

1. The characteristics of each natural mode of the system (i.e., mode shape, 
frequency, and damping characteristics) are known to within acceptable limits. 

2. The total response of the system can adequately be represented by a finite 
linear sum of the individual modal contributions. 

3. The system is lightly damped, which implies that cross-coupling of the modes 
due to the effects of structural damping can be ignored. 

Thus using this normal mode approach, the displacement, u(p , y , t )  at any point 
of the structure when it undergoes any arbitrary motion can be represented by 

The mode shape function @*(p,y) describes the shape of the surface of the system when 
vibrating in the nth natural mode. The coordinates ( p  , y) are in general orthogonal surface 
coordinates and are not meant to be restricted to the Cartesian system. The generalized 
coordinate., qn(t)  , describes the displacement of the surface of the system as a function 
of time and is measured at the point of maximum deflection when the system is executing 
motion in the nth natural mode. This modal displacement, qn( t) , is given by the solution 
of the Lagrange equations, 

where the quantities Mn, Cn, and Kn are the generalized mass ,  damping constant, and 
stiffness constant, respectively, corresponding to the nth natural mode of vibration. Ln( t) 
is the generalized force for  the nth mode and is given by 
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where p( p ,  y, t) is the external pressure acting on the surface of the structure of area A 
and varying in both space and time. 

The solution of (2)  can be given in te rms  of the convolution integral 

where %( t) represents the displacement response of the system in the nth natural mode 
to a generalized unit impulse of displacement in the nth natural mode. The response 
function &( t\ is given for  small damping by 

where w n = { g  

With these fundamental definitions one can now proceed to the calculation of the autocor- 
relation function for  the response of the continuous system. 

The autocorrelation function R( s) at any arbi t rary point ( P o ,  yo) of the system is 
defined by: 

It now remains to substitute the relations ( i) 
simplify. Thus substituting (3 )  into (4) 

( 3) (4) and (5) into equation ( 6 )  and 



substituting (7) into (i) 

and substituting (8) into ( 6 )  we have upon simplifying 

+T \ 
- 1 p(P,-y,t-T)p(p',y',t+s-T')dt f dTdT'dAdA' T-03 2T -T 

Letting t - T = t' , the bracketed term of ( 9) becomes 

T+T Lim i 
- p(P,  y,t')p(~',Y',t'+S+T-T')dt' = R ( S + T " T ' )  

T d m  2T -T-T PYP'Y' 

which can be recognized as being the cross-correlation o r  space-time correlation of the 
external pressure with lag time equal to ( s+T-T'). This function, as can be seen, is 
dependent on both T and T I  as well as on s. 

If the external pressure is assumed to represent a stationary random process,  
then the cross-correlation function, R 

cross-power spectral density S 

I ( s+T-T') ,  may be defined in te rms  of the 
PYP Y 

( w )  of the external pressure by the relation 
PYP'Y' 

The cross-power spectral density function is a complex valued function of fre- 
quency and is defined by 

SPypIr'(~) = c 1 '(W) - Qpyp1,W ( 12) 
PYP Y 
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where C (a) and Q 

spectively, of the cross-power spectral density. Both C 
real .functions of frequency. 

(w) are referred to as the co- and quad-spectrum , re- 
PYP Y PYP Y 

(a) and QPYPIYf (w) a r e  
PYP Y 

By definition 

Hereafter the subscripts PyP'y' shall be omitted for  convenience. It shall be understood 
that 

and 

PYP ' Y' ( ) 
C(w) = c 

Q(4 Q P Y P l r l ( ~ )  

( S+ T- T ' ) ,  is a real quantity. Therefore, 
PYP'?' 

The cross-correlation function, H 

+a, 

R ? ( S + T - T ' )  = 1 {C(W)COS w ( s + T - T ' )  + Q ( w ) s i n  w (s+r-T')}dw ( 1 3 )  
PYP Y -00 

Substituting this expression into (9)  we have for R( s )  , 

By use of the expression for  the unit impulse response function, equation (5) , the 
bracketed integrals may be evaluated to obtain 
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0 3 0 3  

Denoting the right side of ( 1 5 )  by F m n ( w )  , equation (14) becomes 

( w )  , the integral over frequency may be Fmn For  suitably restricted functions, 
evaluated by contour integration. For n=m 

ne -Stnun 
n {sin w n s  - cos w s} t n  n f (s) = 

2L n2 

and C(wn) and Q(wn) are the co- and quad-spectrum of the pressure cross-power 
spectral density evaluated at the resonant frequency, un, of the structure. These functiops 
a r e  also referred to as spatial correlation functions. 

For  n f m  
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Substituting ( 17) and ( 18) into equation (16) 
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The integrals of (19) are analogous to the joint and cross-joint acceptance defined by 
Powell, with the exception that they have not been reduced to dimensionless form by 
dividing by the square of the area and the power spectrum of the pressure at the point 
(Pr) 

The expression (19) is the formal autocorrelation function for  an arbitrary struc- 
ture subjected to random loading. Although the expression appears to be quite cumber- 
some, several simplifying assumptions based on the geometric features of the assumed 
pressure distribution and on the relative magnitudes of the contributing te rms  can reduce 
this expression to a tractable form. 

GEOMETRIC PROPERTIES OF THE ACCEPTANCE INTEGRALS 
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The co- and quad-spectra, C(wn) and Q(wn) respectively, a r e  functions of the 
spatial coordinates a s  well as functions of frequency and spatial separation of the 
measurement points. Some general statements can be made as to the significance of 
these functions under certain conditions on the spatial homogeneity of the pressure 
distribution. 

Consider the integral 

If the surface area is bounded, [)(O 5 P 5 a) , ( 0  5 y 5 b) 1, then ( 20) can be rewritten as 

the second term of (21 )  becomes 

a b  
J J Gn(  a-pl, b-y?') Gm ( a-PfVf,  b-y?'') Pn( a - p l ,  b- 
0 0  o o  

or  

Therefore (21)  reduces to 
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Generally, the mode shape function @k(x& can be expressed as a product of 
spatial independent modes 

The sub-scripts i and j shall be defined to be integral multiples of ( 1/2). Also $1 (xk) 
shall be defined to have the property that 

and if ( 0  I xk 5 c )  , that is if c is the "length" of the bounded structure in the Xk direction. 
In this notation the subscript I denotes the number of modal wavelengths in the xk direc- 
tion. 

Consider the special case where 

that is, if the point ( p ,  y) w e r e  projected onto a plane tangent to the structure at the 
poing (0,O) and rotated 180 degrees and then was reprojected back onto.the structural 
surface, Pn at the point (P,y)  and at its rotated image (a-P,b-y) would be the same. 
Pn actually represents either the co- o r  the quad-spatial correlation functions evaluated 
at the frequency on. These functions have the additional property that 
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Representing the product @n@,Y) @m (p '  , y')  as 

then if Pn= C(wn) 

then the integral ( 2 3 )  will be identically zero if (r+s+p+q) is an integer. Whereas if 

Pn = Q ( W n )  

then the integral ( 2 3 )  will be identically zero when (r+s+q+p) is a half-integer. 

Therefore, under the assumed conditions ( 26) , the co- and quad-spectra of the 

This is a significant result in that under the assumed conditions, which includes 
pressure cross-power spectral density cannot contribute to the same structural mode 
pairs. 
the special case of homogeneous turbulence, exactly one-half of the t e rms  of equation 
( 19) are identically zero. In particular, for n=m , the second term, which is one of the 
most important contributors to the autocorrelation function, vanishes. 

REDUCTION BY MAGNITUDE 

In the case where the modal damping coefficients are small in comparison to 
unity, equation (19) can be considerably reduced to a practical form. In reference to 
( 17) ,for small damping 

If the case where wn >> w, is considered, then the remaining coefficients can 
be approximated by 



2 w fnm m o s  - ~ r -  e-tn n cos w n s  
fnm5 wn 

and 

If the c ros s  and cross-joint acceptance integrals of equation (19) are of the same 
order of magnitude then the cross-terms can clearly be neglected by virtue of the smallness 
of the coefficients (29) in comparison to those of (28).  On the other hand, if wn E om, 
that is when two modal frequencies lie very close to each other such that 

then 
2 

e-tnwns cos uns 
fnm 4mn 

fnm5 
E- 

6 

47rwn 2 

Z- e-tn"ns sin o,s 
fnm 

fnm5 6 

4TUm 2 

Z- e -[mums sin w,s 
fnm4 

fnm 5 6 
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The magnitudes of the coefficients are extremely larger than those of (28)  for  high 
frequencies. 
magnitude of the joint and cross-joint acceptance integrals. 
occurs in the analysis of plates, but it is a common event in the analysis of shells. 

In this case the cross-terms may predominate depending on the relative 
This condition, ( 2 9 )  , seldom 

For plate analysis, it is generally assumed that the cross-terms of (19) may be 
In this case the autocorrelation neglected by virtue of the smallness of the coefficients. 

function is represented by 

n 
R(s) = 

n= i 2tn 

N - 

Powell has shown that the inclusion of the cross-terms causes the calculated 

Neglection of these cross- 
response of a continuous structure to be of significance mainly in the region of the most 
intense excitation, and to be small outside this region. 
te rms  causes the response to be large over the whole vibrating structure,  irrespective 
of the degree of concentration of the excitation. 

I€ in addition to neglecting the cross-terms, the co- and quad-spatial correlations 

In such a case the autocorrelation function is 
functions satisfy ( 26)  then the joint acceptance integrals involving the quad-spatial cor- 
relation functions will be identically zero. 
represented by a linear superposition of damped cosine functions which decay exponen- 
tially with lag time. The decay coefficients of the individual modal decay curves yields 
directly the modal damping coefficient. 

The neglection of the cross-modal contributions implies that the various structural 
modes are statistically independent. This situation is generally not the case; for  a par- 
ticular frequency component of the pressure fluctuations can excite vibrations in many 
modes. Conversely, many frequency components contribute to the excitation of a par- 
ticular mode. The contribution of this mode to the total correlation function will consist 
of a damped sine and cosine function whose decay coefficient will express the actual damp- 
ing ratio associated with that mode, and whose amplitude will be a linear sum of the con- 
tributions from all natural frequency components. Thus if a single modal contribution to 
the total autocorrelation function could be isolated, such as by means of a narrow band 



filter operation on the response measurements, the resulting correlogram could be ex- 
pressed as 

w s  
R ~ (  s )  = [ A ~  cos wns  + B~ sin wns  le-tn n 

where An and B, would express the contributions from all frequencies. The total auto- 
correlation function would be a linear sum of all the frequency components 

n= I 

JOINT AND CROSS-JOINT ACCEPTANCE INTEGRALS 

The magnitude of both An and B, depends very strongly on the magnitude of the 
joint and cross- joint acceptance integrals. These integrals can be evaluated practically 
only under very restricted conditions. 

In any given analysis the major uncertainty lies in the description of the pressure 
distribution on the surface of the structure. Generally, the spatial correlation functions 
a r e  taken to be spatially separable and of the form 

C(wn) = C,e -an I p - p ' ~ c o s  %(/3-p1)  embn 

and 

where an, ah, bn, bA, cn,  cA, dn and d;l a r e  functions of the spatial coordinates. The 
form of these functions (34 )  has been justified to some extent by experiments. The ex- 
perimental determination of the parameters requires numerous closely-spaced measure- 
ments. Unfortunately, due to the lack of adequate instrumentation, such determinations 
have not as yet been fully exploited. For the purpose of calculation, these parameters 
a r e  generally assumed to be constant over the structural surface. This condition cor- 
responds to the case of a homogeneous pressure distribution which satisfies the condition 
of eqqt ion ( 2 6 ) .  Even for this condition, the calculation of the acceptance integral is 
extremely cumbersom e. 
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1 Bozich presents calculations of the joint acceptance integral for  a variety of 
plate configurations, which show the relative selectivity of the plate to the pressure 
wavelength. He shows that when the pressure correlation lengths are small compared 
with plate dimensions , the joint acceptance function becomes essentially independent of 
the mode. In such a case the calculations become extremely simplified. 

MEAN SQUARE RESPONSE 

The mean square response is obtained by setting the lag time equal to zero. This 
operation considerably simplifies the coefficients fmn( s) defined by ( 17) and ( 18). How- 
ever,  one is still faced with the difficulty of evaluating the joint and cross-joint acceptance 
integrals. For separable cross-correlation functions, Nash has calculated the response 
of elastic plates to distribute random pressures.  
by considering the mean square space average of the response as treated by White . 

2 

Additional simplification can be made 
5 

CONCLUSIONS 

The determination of the response of practical structures by means of the normal 
mode approach requires detailed knowledge of both the free  vibration response of the 
structure as well a s  the characteristics of the applied pressure field. Generally, this 
information is not available and considerable simplying assumptions must be made for 
the purpose of calculation. Upon exam ination of the complexity of the autocorrelation 
function in detail, it becomes obvious that the multiplicity of the e r r o r s  of uncertainty of 
both the dynamic structural quantities and the fluctuating pressure field characteristics 
in physical situations prevents the attainment of reliable calculated values. Moreover , 
even if the structural and field characteristics w e r e  accurately known, the evaluation of 
the acceptance integrals would present enormous difficulties even by numerical evaluation 
by high speed digital computers. 

The essential value in the derivation of the response of practical structures to 
fluctuating pressure distributions by means of the normal mode approach therefore lies 
in providing the means for understanding those mechanisms which significantly influence 
the response quantities. 

This analysis shows that the form of the autocorrelation function of response is 
governed primarily by the modal damping coefficient, tn,  and the relative modal accep- 
tance of the acoustic energy. The degree of energy acceptance will be a maximum when 
the acoustic wavelength equals the elastic wavelength of the structure and when the cor- 
responding acoustic frequency equals the resonant frequency. Thus the magnitude of the 
acoustic energy at a particular frequency alone does not govern the actuality of response. 
The acoustic and elastic wavelength must also be similar. This condition is referred to 
as coincidence. 
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In order to obtain an autocorrelation function whose characteristics resemble a 
pure damped cosine function t'ne spatial correlation functions , C( wn) and &( un) , must 
satisfy the condition (26)  , the modal damping coefficient must be such that (29) is satis- 
fied, and the condition of coincidence must be satisfied only for  the acoustic energy of 
frequency (wn) . For these conditions to be satisfied simultaneously in physical situations 
would be a r a r e  occasion. Thus it appears that autocorrelation functions of response 
measurement will generally be complex in nature and will consist of a superposition of 
damped sine and cosine functions of many frequencies. Narrow band filtering of the 
response measurements may yield autoc o rrelation functions possessing single degree 
of freedom characteristics depending on the spatial homogeneity of the pressure correla- 
tion functions. 
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